Roosevelt Biosafety Training

Created 10/2015

Objectives

- Identify risks and hazards in biological laboratories
- Understand biosafety levels for laboratories and the proper procedures for working in them
- * Learn ways to reduce risks and hazards by understanding the use of aseptic technique and proper use of biological safety cabinets
- Learn proper procedures for cleaning biohazardous spills
- * Learn proper disposal procedures for biohazardous waste in biological laboratories

* Risk assessment:

- * What are the biological and physical hazards of the organism/agent?
- * What procedures may spread the organism/agent?
- * What is the best method for inactivating and containing the organism/agent?
- * What is the pathogenicity of the organism/agent?
- * What are the potential deficiencies in practices of lab workers?

- * Risk assessment:
 - Identify agent hazards
 - * CDC and WHO have guidelines
 - * Biosafety level
 - * Identify laboratory procedure hazards
 - * Aerosols
 - Volume and concentration
 - * Use of sharps or animals
 - * Complexity of experiment
 - Determine appropriate biosafety level and additional precautions
 - Evaluate staff and equipment for safe practices
 - * Review risk assessment with biosafety professionals

* Risk Groups

- * Organisms are categorized by:
 - Potential effect of the agent on a healthy human adult*
 - * Ease and route of transmission
 - * Infective dose
 - * Stability in environment
- Knowing the risk group of the organism can determine the procedures necessary for reducing risk
- * May differ between strains of the same organism, depending on pathogenicity of the different strains
- NIH and WHO definitions differ slightly
- Do not equal biosafety levels (though they are correlated)

Risk Groups

- Risk Group 1
 - * Agents not associated with disease in humans or animals
- * Risk Group 2
 - * Agents associated with human or animal disease, but are unlikely to cause serious hazard to lab workers
 - * If exposure happens, preventive or therapeutic interventions are usually available
- * Risk Group 3
 - * Agents associated with serious or lethal human or animal disease
 - * Treatments may exist, and the agent isn't easily spread
 - Use is discouraged at Roosevelt University
- Risk Group 4
 - Agents associated with serious or lethal human or animal disease that can be easily passed between individuals
 - Treatments are not usually available
 - * Use is prohibited at Roosevelt University

- * Routes of laboratory transmission
 - Inoculation from contaminated sharps
 - * Spills and splashes onto skin and mucous membranes
 - Ingestion (mouth pipetting)
 - Animal bites and scratches
 - * Inhalation of infectious aerosols
 - * Considered to be a serious hazard and likely culprit of most laboratory exposures

Reducing Risks: Aerosols

- * Procedures that produce aerosols:
 - * Pipetting
 - * Blending
 - Centrifugation
 - * Sonicators and vortex mixers
- * Vigilant workers can reduce the amount of aerosols by being cautious with above procedures
- * Use biological safety cabinet when these procedures must be performed

Reducing Risks: PPE

- * Minimum Personal Protective Equipment:
 - Safety glasses
 - * Gloves
 - * Lab coat
- * Other equipment that may be necessary based on risk assessment:
 - Mask or face shield
 - * Respirator
 - * Gown

Reducing Risk: Equipment

- Biological Safety Cabinets (BSC)
 - * Produce a sterile field to protect both the worker and the culture
- * Centrifuge safety cups
- * Sealed rotors
- * Maintenance of equipment is essential

Reducing Risk: Facility

- Engineering controls to prevent release of hazards
 - * Directional airflow in the lab
 - Substitution of lower risk agent for higher risk agent if possible
- * Limited access to building or labs
- * Training

Biosafety Level 1

- Well characterized strains of agents not known to cause disease in healthy adults
- Basic containment with sink for hand washing
- * Laboratory doors kept closed during experiments
- * Decontaminate work surfaces daily and after spills
- * All waste decontaminated before disposal
- Mouth pipetting prohibited
- * Eating, drinking, smoking, and applying cosmetics are not permitted in lab
- * Wash hands after handling materials and when leaving the lab
- PPE use recommended (required at Roosevelt)
- * Spills reported to lab manager to ensure proper documentation and clean-up

Biosafety Level 2

- * All as in BSL-1
- Moderate-risk agents
- * Can be used on the open bench if risk of aerosols and splashes is low, higher risk organisms must be manipulated in BSC
- * PPE required, cannot be worn in non-laboratory areas
- Access to sink for hand washing and decontamination
- * Access to laboratory is limited or restricted
 - * Persons with increased risk of acquiring infection or for whom infection is unusually hazardous should not be allowed into labs
 - * Only individuals that meet entry requirements (e.g. immunizations) may enter
- Workers advised of potential hazards and given proper training in handling agents
- * Biohazard signs clearly posted on doors and equipment
- * Sharps use minimized

Biosafety Level 3

- * All as in BSL-1 and -2
- * Agents with a potential for respiratory transmission with serious or lethal infections
- * Work is discouraged at Roosevelt
- * Lab personnel must have specific training in handling agents and are supervised while conducting experiments
- * All work done in BSC or other enclosed equipment
- * Controlled access to lab and special ventilation to prevent accidental release
- * Lab must have specific design and containment equipment
 - * Air lock, shower, or changing room required between unrestricted areas and lab
 - * Surfaces of walls, floors, and ceilings must be water resistant
 - * Windows are closed and sealed
 - Exhaust system provided to prevent release of agents
- * PPE required and may include respirator, double gloves, gowns, etc. Lab coats are not suitable
- * Workers must comply with entry and exit procedures
- Vacuum lines protected with HEPA filters and liquid traps

Biosafety Levels 4

- * All as in BSL-1, -2, and -3
- * Work is prohibited at Roosevelt
- * Agents with high risk of lethal disease, easily transmitted (aerosol), with little or no treatment options
- * Class III BSC or full-body, air-supplied positive pressure suit required for working
- * Controlled access to labs, specialized ventilation, and waste management systems

Biosafety Cabinets

- * Use when procedures are likely to produce aerosols or when high concentrations or large volumes of agent are being used
- Different models provide protection in different ways; must be chosen according to needs of the lab and agents used
- * Lab workers must be trained in proper use of BSC

Biosafety Cabinets

* For proper use of BSC, watch following video:

http://www.youtube.com/watch?v=ZnUW1N-JJz8

- * Lab workers may require in-person training depending on procedures, experience, and agents being used
- * Instructors MUST train their students (students cannot train other students)
- In-person training will be provided by instructor or laboratory manager

Aseptic Technique

- * Method of laboratory work that prevents contamination by (unwanted) microorganisms
- * Provides barrier between sterile cell cultures and microorganisms in the environment
- * Varies depending on whether working on the bench or in a BSC

Aseptic Technique

* For proper bench-top aseptic technique, watch the following video:

http://www.youtube.com/watch?v=bRadiLXkqoU

- * Lab workers may require in-person training depending on procedures, experience, and agents being used
- * Instructors MUST train their students (students cannot train other students)
- In-person training will be provided by instructor or laboratory manager

- * Basic biological spill kit should contain:
 - * Disinfectant (e.g. bleach 1:10 dilution, diluted quaternary solution, or other suitable disinfectant)
 - * Absorbent material (paper towels, spill pillows, etc.)
 - * Waste container (biohazard bags and sharps containers)
 - * PPE
 - * Mechanical tools (forceps, dustpan and broom)
- * Procedure can depend on agent spilled and where

- * BSL-1 spills:
 - Notify others
 - * Wear PPE
 - * Surround spill with disinfectant
 - Clean up with paper towels (if large, use spill pillows)
 - * Re-apply disinfectant to the surface and let sit for 10 minutes. Clean again.
 - Put contaminated waste in biohazard bags for autoclaving
 - * Wash hands
 - Notify lab manager to assure proper cleanup

* BSL-2 spills:

- * Evacuate the room and close doors; notify lab manager
- * Remove any contaminated clothing and decontaminate body surfaces
- Allow at least 30 minutes for potential aerosols to be reduced before reentering
- Don protective clothing and respiratory protective equipment
- * Decontaminate spill with appropriate disinfectant and allow 10 minutes of contact time
- Clean spill with paper towels or spill pillows and dispose in biohazard bag
 - * Pick up sharps with forceps or tweezers, never with hands, and dispose of in autoclavable sharps container
- Reapply disinfectant and clean after 10 minutes.
- Wash hands and/or shower after cleaning spill

- * Biosafety Cabinet Spill
 - Keep cabinet running during the cleanup
 - Remove any contaminated PPE and replace with clean
 - * Apply appropriate disinfectant to the spill (bleach can be used but should be used with caution; it will corrode the stainless steel)
 - * Wipe up spill and dispose of paper towels in biohazard bag
 - * Reapply disinfectant and clean again
 - * If bleach is used, clean the surface of the cabinet with water to remove traces of bleach
 - Items that must be removed should also be decontaminated before unloading from cabinet
 - Run UV/germicidal lamp for at least 15 minutes for final decontamination (formaldehyde gas can also be used)

Waste Disposal

* Sharps

- * Items capable of puncturing, cutting, or abrading the skin (e.g. broken glass or plastic ware, scalpels, razor blades, needles, etc.)
- * Never place sharps in regular trash
- * Dispose of in puncture proof containers
- * Clean broken glass can go into broken glass containers
- Any sharp contaminated with blood or other biohazard must be decontaminated (autoclave or bleach) and disposed of in an appropriate container
 - * Leak proof, rigid, puncture-resistant
 - Tightly sealed
 - Labeled with biohazard symbol

Waste Disposal

* Biohazardous waste

- * Waste containing infectious or potentially infectious substances (e.g. blood, bacterial cultures, liquid waste from cell culture, etc.)
- * All waste must be disposed of in bags marked with biohazard symbol; bags can go into labeled, leak-proof containers to await autoclaving
- Autoclaved before disposal in regular trash
- * Autoclave should be checked regularly for proper functioning (reaches temperature and pressure, etc.)

Obtaining Biohazardous Materials

- * Lab Manager approval required for new organisms
- * Check risk group and recommended biosafety level
- * Determine if necessary or if a lower-risk organism can be used instead
- Submit for lab manager approval
 - Will check requirements to determine if Roosevelt has appropriate facilities
 - Currently no facilities for BSL-3
 - Fill out required paperwork in order to obtain organism
- Training with new organism must be conducted by lab manager or instructor

Resources and Sources

- * Center for Disease Control's Biosafety site www.cdc.gov/biosafety
- * NIH Office of Science Policy for Biosafety http://osp.od.nih.gov/office-biotechnologyactivities/biosafety/nih-guidelines
- * Roosevelt's CHP https://www.roosevelt.edu/~/media/Files/pdfs/Policies/ /Safety/ChemicalHygienePlan.ashx